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Abstract

The air bubble rise velocity in still water depends mainly on the bubble size and is basically influenced by
buoyancy, viscosity and surface tension. In high-speed flows the number of forces acting on air bubbles
increases with turbulence, non-hydrostatic pressure gradient, shear forces, bubble clouds and free-surface
entrainment. Air bubbles in these flows are used for cavitation protection of hydraulic structures such as
chutes, spillways and bottom outlets. Here, air is normally added by means of aerators upstream of regions
where the cavitation number falls below a critical value mainly to reduce the sonic velocity of the fluid and
cushion the cavitation bubble collapse process. The distance between successive aerators depends basically
on the bubble rise velocity. Until today, the bubble rise velocity in high-speed flows was not thoroughly
investigated because of limited laboratory instrumentation. The present project focused on the streamwise
development of air concentrations in high-speed flows along a 14 m long model chute. The bubble rise
velocity was indirectly derived from the air detrainment gradient of the air concentration contour lines
downstream of an aeration device. It accounts for the main hydraulic parameters chute slope, Froude num-
ber and air concentration. It is demonstrated that the bubble rise velocity in high-speed flow and stagnant
water differ significantly due to fracturing processes, turbulence, and the ambient air concentration.
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1. Introduction

A key problem of high-velocity open channel or chute flows is the potential of cavitation dam-
age along the chute bottom and side walls. Air added to high-speed water flows is known to re-
duce the sonic fluid velocity and thus the risk of cavitation damage, such that chute inverts are
protected by sufficient air presence close to the chute boundaries with so-called chute aerators.
They are placed in regions where the cavitation number is small, where natural free-surface aer-
ation has not yet reached the chute floor, or where the air added has detrained. The distance re-
quired between two aerators for optimum chute protection is not yet established because the air
detrainment process is currently not fully understood (Falvey, 1980, 1990; Chanson, 1989, 1997;
Kramer et al., 2002). Fig. 1 shows a typical photograph of the air bubble distribution in such two-
phase flows with large air concentration and bubble size close to the free surface.

Currently no reliable design guidelines exist for the distance required between two aerators,
although aerators have been proposed as early as in the 1970s. Whereas the motion of air bubbles
in still water were investigated e.g. by Haberman and Morton (1956), there is presently a gap of
knowledge on the behaviour of air bubbles in high-speed flows. The forces acting on air bubbles in
chute flows are more complicated as those in still water. Furthermore, no detailed laboratory
experiments were conducted because of limited laboratory instrumentation. Because optical sys-
tems fail in turbulent flows with a large air concentration, modern fiber-optical systems were used
Fig. 1. Typical air bubble distribution in high-speed flow, flow from left to right (Möller, 2003).
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herein to detect bubbles and droplets. This paper presents air concentration measurements in
chute flows using fiber-optical instrumentation and describes the time-averaged behaviour of
air–water two-phase flows.
2. Air bubble rise velocity

2.1. Transport principle

According to Falvey and Ervine (1988), the transport of a single bubble is mainly influenced by
four forces, namely: (1) inertia, (2) drag, (3) buoyancy, and (4) turbulent eddy transport. Rutsch-
mann et al. (1986) found in addition an effect of the non-hydrostatic pressure gradient on the bub-
ble rise velocity, and Kobus (1991) mentioned an influence of bubble clouds on the single bubble
transport process. Fig. 2 shows schematically the various forces acting on air bubbles in chute flow.

The bubble transport process was developed in fluid mechanics, heat transfer, biochemistry and
nuclear engineering (Soo, 1967; Braeske et al., 1997). A basic contribution on the rise velocity of a
single bubble in still water is due to Haberman and Morton (1956) (Fig. 3). The Stokes� law of
drag on rigid spherical bubbles was improved. Comolet (1979) based his findings on Haberman
and Morton�s and his own experimental tests and provided a theory based on the drag, the weight,
and the buoyant forces. The motion of a single bubble is often expressed in dimensional terms
with the bubble (subscript bu) rise velocity ubu versus the equivalent bubble diameter dbu. The
drag resistance coefficient was also related to the bubble Reynolds number Rbu = ubudbu/m, with
m as the kinematic viscosity of water.

2.2. Governing equations

Expressions of the dimensional rise velocity are plotted in Fig. 3. The transport of small rigid
spherical bubble depends on surface tension. With g as gravitational acceleration, qa density of
Fig. 2. Forces acting on air bubbles downstream of a chute aerator.



Fig. 3. Bubble rise velocity in still water as a function of bubble size (Haberman and Morton, 1956).
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air, and qw density of water, air bubbles in water with dbu < 0.068 mm follow according to Stokes
(Falvey, 1980)
ubu ¼
2

9
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bug
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1� qa

qw

� �
. ð1Þ
For air bubbles with 0.068 mm < dbu < 0.80 mm, the bubble rise velocity is (Comolet, 1979)
ubu ¼
1

18
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. ð2Þ
With increasing bubble size, the bubble shape changes from spherical to oblate spheroid with the
bubbles rising along an irregular or spiral trajectory (Kobus, 1991). Comolet (1979) observed that
both surface tension and buoyancy are important, and suggested for bubbles with
0.80 mm < dbu < 10 mm
ubu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:52gdbu þ 2:14

rt
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r
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with rt as the interfacial surface tension between air and water. For bubbles exceeding
dbu = 10 mm surface tension effects can be neglected and the rise velocity follows simply (Falvey,
1980)
ubu ¼
ffiffiffiffiffiffiffiffiffi
gdbu

p
. ð4Þ
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2.3. Air bubbles in high-speed flow

2.3.1. Turbulence
Turbulence reduces the terminal bubble rise velocity, because turbulent shear fractures larger

bubbles into smaller bubbles. Falvey (1980) estimated the critical bubble size dbu(95) from the loss
of energy according to Hinze (1975). He therefore proposed an equation of Rouse (1950) to
account for the energy loss by the energy slope SE for the critical bubble size as
dbuð95Þ ¼ 0:725
rt

qw

� �3
1

gSE�u

� �2
" #1

5

. ð5Þ
Here dbu(95) is the bubble diameter for which less than 95% of the air is contained in this bubble
diameter, and �u is the average flow velocity. If ubu is the terminal bubble rise velocity in still water,
then ubut is the terminal rise velocity in turbulent flow. Expressing ubut = a Æ ubu with a as a coef-
ficient versus the dimensionless discharge Q2

w=ðgh5wÞ, where Qw is water discharge and hw the flow
depth, only rising bubbles may be considered with this relation. For Q2

w=ðgh5wÞ > 5, the empirical
coefficient is a � 0.25; air bubbles then rise four times slower than in still water. Chanson and
Toombes (2002) supported this approach. The presence of finer bubbles was attributed to bubble
break-up processes by turbulent shear.
2.3.2. Bubble clouds
A bubble cloud in stagnant water moves with a considerably larger mean velocity than a single

bubble because of the upward current. This effect is counteracted in the same order of magnitude
by bubbles being displaced laterally along their paths and a less induced vertical water flow
(Kobus, 1991). Volkart (1985) explained the reduced bubble rise velocity in his laboratory inves-
tigations by the large number of bubbles in mutual contact and interference, resulting in colli-
sions, deformations, bubble collapse and bubble coalescence, and thus a loss of kinetic energy
and higher drag of air bubbles.
2.3.3. Non-hydrostatic pressure
According to Rutschmann et al. (1986) the bubble rise velocity in the impact zone of jets onto a

chute bottom is affected by a non-hydrostatic pressure gradient. The effect of the vertical pressure
gradient dp/dz on the bubble rise velocity results from the balance between the upward turbulent
diffusion and the downward pressure gradient. Although their equation proposed was dimension-
ally incorrect the effect of non-hydrostatic pressure gradient on the bubble rise velocity is retained.

Wood (1988) predicted the bubble rise velocity in non-hydrostatic pressure conditions similarly.
Using the results of Rutschmann et al. (1986) and Chanson (1988) he found that pressure at the
impact zone may become much larger than the hydrostatic pressure. This over-pressure leads to
pressure gradients resulting in massive air detrainment in the impact region. According to Chan-
son (1988) the non-hydrostatic pressure gradient is responsible for the bubble rise velocity, i.e.
u2but ¼ u2bu
1

qwg
dp
dz

; ð6Þ
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where ubu is the bubble rise velocity in stagnant water from (1)–(4). The bubble transport direction
depends on the algebraic sign of the pressure gradient; bubbles thus rise towards the free surface
for dp/dz > 0, whereas they are captured by the flow if dp/dz < 0. Fig. 2 shows air bubbles down-
stream of an aerator subjected to these effects. According to Volkart (1985) the bubble rise velo-
city in turbulent flow may be 10 times slower than in still water, i.e.
ubut ¼ ubu=10. ð7Þ
3. Experiments

3.1. Hydraulic chute

A 14 m long prismatic rectangular chute model of b = 0.50 m wide was used for the two-phase
flow investigations with a variable bottom slope 0% 6 So 6 50%, a variable inflow depth up to
ho = 0.12 m and discharges up toQw = 250 l/s (Fig. 4). The automatically driven measuring system
carried a fiber-optical probe manufactured byRBI, Grenoble, France. The large data sets were col-
lected and analysed automatically with a graphical user interface based on Matlab. Preliminary
investigations were conducted to verify the experimental accuracy (Kramer, 2004). All quantities,
namely: (1) water discharge Qw, (2) air discharge Qa, (3) positioning in the streamwise x- and the
perpendicular to the chute bottom z directions, and (4) automised data collection were controlled
by an in-house designed LabView program. Automatic data acquisition including air concentration
profiles, and bubble size distribution were also sampled by programs based on Matlab.
Fig. 4. Photograph of VAW chute model.
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Two distinctly different air supply devices to generate air-water flow were employed: (1) deflec-
tor similar to a prototype aerator, and (2) pre-aerated flow by adding air to the supply pipe. These
allowed to analyse the effect of the approach flow conditions on the development of the air trans-
port along the chute model. Both set-ups were investigated separately to determine their effects of
the remaining hydraulic parameters. This paper focuses on the pre-aerated data sets. Differences
between the two air supply systems were presented by Kramer (2004).
3.2. Measuring system

A fiber-optical probe measured the following quantities: (1) local air concentration C, (2) mix-
ture flow velocity um, and (3) bubble diameter dbu, besides other statistical parameters. The basic
principle of the fiber-optical instrumentation was described by Boes (2000). Measured data were
time-averaged over usually 20 s. No air concentration can be deduced with this technique for
C < 0.0001, a value irrelevant for chute flow. Measurement spacing was set inversely proportional
to the gradients dC/dx and dC/dz, i.e. a variable grid system was defined to collect more infor-
mation at reaches with large concentration gradients. Compared to Boes (2000) a new software
detected 200,000 instead of 4000 signals (air bubbles) with a scan rate of 2000 Hz, along with a
reduced computational time to handle the large data sets. Therefore, the measurement was inter-
cepted after 20 s even for a high bubble frequency. A complete set of data involved more than 664
data points for each run in a test series.

Various attempts were made to determine the turbulence intensity from the RBI instrumenta-
tion, such as estimating the Reynolds turbulence term by substituting instantaneous velocity with
the average mixture flow velocity um plus a fluctuation term v0a. For the latter an instantaneous
bubble velocity v0a was separated from the mean mixture velocity, assuming that bubble size re-
mains constant, i.e. u ¼ um þ v0a. The attempt failed because of the temporally variable bubble
size. The turbulent boundary layer was finally calculated by standard equations (e.g. Schlichting
and Gersten, 1996). A detailed description of the measuring system and the chute model is given
by Kramer (2004).

3.3. Air concentration contours and gradients

Local air concentration, flow velocity and air bubble size were determined by interpolated con-
tour lines and air concentration profiles. The mixture flow depth h90 and the average air concen-
tration C90 were defined in terms of the standard air concentration C = 90%. A non-dimensional
coordinate system X90u = x/h90u and Z90u = z/h90u was adopted, with the uniform (subscript u)
mixture flow depth h90u measured at the chute end. Fig. 5 shows air concentration contours for
a horizontal chute in which the inflow Froude number Fo ¼ ðQw þ QaÞ=ðgh3ob2Þ

1=2, the inflow
depth ho and the surface roughness were kept constant. The local air bubble rise velocity was indi-
rectly determined using the gradient dZ(C)/dX(C), thereby assuming that air bubbles do not rise
with a steady velocity ubu but depend on local air concentration and turbulence. The contour lines
considered for the analysis involved air concentrations of C = 5.0%, C = 1.0% and C = 0.1%,
respectively. They rise steadily along the chute model until levelling-off at a point determined indi-
vidually for each run. The detrainment gradient
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Fig. 5. Air concentration contour plots for Fo = 10.3, ho = 0.06 m, b = Qa/Qw = 0.21, (a) So = 0%, h90u = 0.087 m,
(b) So = 10%, h90u = 0.064 m, (c) So = 30%, h90u = 0.054 m, and (d) and So = 50%, h90u = 0.051 m.
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detðCÞ ¼
dZ90uðCÞ
dX 90uðCÞ

¼
oC

oX 90u

oC
oZ90u

ð8Þ
was defined between the lower starting point of the contour line and the kink with respect to the
selected air concentration. Small air concentrations C = 1.0% and C = 0.1% were correlated with
small bubble rise velocities or detrainment gradients, therefore. Downstream from the kink the
contour lines either remain parallel to the chute bottom or decrease almost linearly. The 5.0% con-
tour line seems to be unaffected by the bottom slope whereas the contour det0.01 flattens for stee-
per chutes. For the inflow Froude number Fo = 10.3 the air concentration falls below C = 0.1%
only at the chute end (Fig. 5). Tests with other Fo were discussed by Kramer (2003).

3.4. Bubble size distribution

The bubble size dbu [mm] is of major importance for the bubble rise velocity (Fig. 3). The fiber-
optical measuring system detected the local bubble sauter cord size by means of flow velocity, fre-
quency and time-averaged air concentration using a statistic algorithm. It relies on all three
parameters, except in flow regions where bubbles remained undetected. Fig. 6(a) shows the bubble
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size distribution dbu [mm] over the non-dimensional chute length X90u and the flow depth Z90u

using contour plots. The bold line represents the mixture flow depth h90. In the lower flow zone
0 6 Z90u 6 0.2, the bubble size is small with dbu < 1.0 mm due to high turbulence. The zone
0.2 6 Z90u 6 0.7 is represented by bubble diameters 1.0 mm 6 dbu 6 5.0 mm, similar to the size
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quoted by, e.g. Haberman and Morton (1956). For Z90u P 0.7 air bubbles increase rapidly due to
air pockets ejected from the flow into the atmosphere. This finding is supported by Fig. 6(b) and
(c), showing bubble size profiles dbu/dbu90 against Z90u for selected locations X90u along the chute.
The first profile of Fig. 6(b) at X90u = 2.4 (x = 0.122 m) was influenced by the jetbox. All profiles
further downstream increase up to X90u = 49.8 (x = 2.540 m) before decreasing to uniform con-
ditions. Fig. 6(c) shows a similar trend for a higher approach Froude number; larger turbulence
accelerates the bubble development such that uniform bubble distribution is attained earlier. Mea-
surements of the uniform flow region suggest for the characteristic bubble size distribution
(Fig. 6(d))
dbu=dbu90u ¼ ðZ90u � 0:005Þ7 þ 0:04 So P 30%. ð9Þ

The bubble size in the uniform region dbu90u divided by the inflow depth ho against the chute slope
So is shown in Fig. 6(e). The bubble size is of the order of the inflow depth 0.8 6 dbu90u/ho 6 1.6,
with a decreasing trend for steeper chute slopes. This demonstrates that air pockets instead of air
bubbles represent the mixing region with an air concentration of C = 90%, as described, e.g. by
Falvey (1980). Fig. 6 demonstrates, at least qualitatively, that a constant bubble size distribution
in chute flow is unrealistic in highly turbulent flows. Assuming a constant bubble rise velocity as
proposed in the literature seems to be questionable when considering ubu as a function of the
bubble size.
4. Development of air concentration isolines

4.1. Effect of Froude number

The increase of the air concentration isoline is defined by Eq. (8), and typical examples are
shown in Fig. 5. Individual detrainment gradients were taken for all measurements (Kramer,
2004). Air detrainment gradients det(C) are influenced by the local air concentration C and the
local air bubble rise velocity ubu. Rise velocities are low in regions of small air bubbles dbu 6 2 mm
(Fig. 6). In the following, the effect of the inflow Froude number Fo on the air detrainment
gradients det(C) is analysed.

Fig. 7 shows air detrainment gradients det(C) against Fo for the four chute slopes investigated
relative to C = 5.0%, 1.0% and 0.1%. The linear trend lines correlate with the gradients
det(0.05), det(0.01) and det(0.001). The trend of det(0.05) is relatively weak, although a larger air con-
centration seems to give smaller gradients for high Froude numbers, whereas the detrainment is
larger for smaller Froude numbers. Despite the data scatter a relation between the inflow Froude
number Fo and the air detrainment gradient det(C) was established for the C = 1.0% and the
C = 0.1% contour lines. The det(0.001) trend line is below det(0.01), indicating that a small air pres-
ence remains longer in chute flow.

For gradients det(0.01) and det(0.001) equal to zero, the air concentration C = 1.0% or C = 0.1%
never fell below these values along the entire chute. The air concentration thus had a minimum of
C = 0.1% for Fo P 14.5 in the horizontal chute (Fig. 7(a)) and Fo P 8.3 for So = 50% (Fig. 7(d)).
Likewise, the air concentration always fell below C = 1% in horizontal chutes but never below this
value for Fo P 10.7 and So = 50%. Measurements for chute slopes 10% 6 So 6 30% are inter-
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mediate to the extremes investigated. Therefore, both Froude number and chute slope influence
the air detrainment gradients.

4.2. Effect of chute slope

Fig. 8 shows trend lines for C = 1.0% and C = 0.1%; those for det(0.05) were dropped because of
large data scatter and the irrelevance in engineering practice. The trend line for the horizontal
chute So = 0% (—) is at the top with the largest detrainment gradients for det(0.01) and
det(0.001), respectively. For larger chute slopes the trend lines steepen, indicating smaller air
detrainment gradients for a given Fo. The gradient det(C) is thus a function of air concentration,
inflow Froude number and chute slope
detðCÞ ¼ �aFo þ b; ð10Þ

with a = f(So). The common point b = aFb + detb depends on the air concentration C, where Fb(C)

is the inflow Froude number Fo at point b and detb(C) is the corresponding detrainment gradient
det(C). The data may be expressed with the two parameters detb(0.01) = 0.015 and Fb(0.01) = 6.9 for
C = 1.0%, and detb(0.001) = 0.012 and Fb(0.001) = 5.8 for C = 0.1% as
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detðCÞ ¼ �aðFo � FbðCÞÞ þ detbðCÞ. ð11Þ

The variable a as shown in Fig. 9(a) for the four chute slopes and for det(0.01) and det(0.001) is
almost independent of air concentration. The air concentration influences the location of point
b in Fig. 8, but the slope a is a function of chute slope only. The best fit for a is (Fig. 9(a))
a ¼ 1:4� 10�3½1þ 0:5 tanð2:7 sin aÞ� 0 6 sin a 6 0:5. ð12Þ

Combining (11) and (12) yields with the previously set constants detb(C) and Fb(C) (Kramer, 2004)
detðCÞ ¼ �1:4� 10�3½1þ 0:5 tanð2:7 sin aÞ� � ðFo � FbðCÞÞ þ detbðCÞ 0 6 sin a 6 0:5. ð13Þ

Eq. (13) is based on a large number of test conditions in the turbulent smooth regime. It may serve
for the estimation of the flow features in prototype chutes where experimentation is difficult.
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5. Bubble rise velocity

The fiber-optical probe is a 1D measuring system, allowing for a direct link between air concen-
tration and bubble rise velocity ubu. Although bubble size dbu was determined, a relation between
the bubble size dbu and the bubble rise velocity ubu seems to be uncertain in highly turbulent flow.
Moreover, the bubble size varies with turbulence and air concentration, as discussed. Accordingly,
a novel approach between the air concentration C and the bubble rise velocity ubu was sought. It
was determined using the air detrainment gradient det(C) according to (8) describing the increase
of air concentration contours with distance, thereby accounting indirectly for the average inflow
velocity uo = (Qw + Qa)/(bho). The time-averaged bubble rise velocity with respect to the air con-
centration C was thus defined as
ubuðCÞ ¼ detðCÞuo. ð14Þ
The air concentration contour lines C = 1.0% and C = 0.1% referring to det(0.01) and det(0.001)
were used to determine the bubble rise velocity ubu(0.01) and ubu(0.001), where ubu(0.01) refers to
the rise velocity for the C = 1% air concentration contour line, as shown in Fig. 9(b). For a
detrainment gradient det(0.01) = dZ90u/dX90u = 0.32/40 = 0.008 relating to the C = 1% contour
and an average inflow velocity of uo = 9 m/s the bubble rise velocity is ubu(0.01) = det(0.01)uo =
0.008 Æ 9 = 0.072 m/s or 7.2 cm/s. Chanson (1989) considered a constant bubble rise velocity for
air detrainment processes, namely ubu = 0.16 m/s for scale models, and ubu = 0.40 m/s for proto-
types. However, Fig. 7 shows that the air concentration contours related to small air concentra-
tions decay slower than those relating to larger air concentrations. This can be explained either by:
(1) small air concentration contours refer to small air bubbles whose rise velocity is reduced
according to Fig. 3, or (2) turbulent and diffusive effects act as a random generator and distribute
air bubbles in regions with smaller air concentrations. This section presents bubble rise velocities
using (14). Fig. 10 shows non-dimensional bubble rise velocity
Ubu ¼
ubuðCÞffiffiffiffiffiffiffi
gho

p ; ð15Þ
related to C = 1.0% as a function of the streamwise average Froude number
Fo�P ¼ Fo þ FP

2
; ð16Þ
using the arithmetic average of Froude numbers at the inflow Fo and at the kink of the contour
line FP. It incorporates thus the average flow behaviour in the region where the air bubbles actu-
ally rise, and furthermore includes the drawdown effect and thus indirectly the increase of turbu-
lence and shear. The data of Fig. 10 refer to the four investigated chute slopes. Despite the data
scatter, Ubu reduces as Fo�P increases. Further, the bubble rise velocity falls to zero for
Fo�P P 13.8, indicating that air bubbles associated with C = 1% are then kept at the chute bot-
tom. With F0 as the Froude number where Ubu = 0, a constant slope t = 0.029 for F0 = 13.7 and
C = 1% was obtained in (Fig. 10)
Ubu ¼ �tðFo�P � F0Þ Fo�P P 7:5. ð17Þ
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Fig. 10. Non-dimensional bubble rise velocity Ubu for C = 1.0% as a function of streamwise Froude number Fo�P,
(—) trend line with t = 0.029 from (17) for (a) So = 0%, (b) So = 10%, (c) So = 30%, and (d) So = 50%.
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Eq. (17) is limited to Fo�P P 7.5 and Ubu 6 0.15 for C = 1.0%, and to Ubu 6 0.10 for C = 0.1%
(Fig. 11). These were the maximum non-dimensional bubble rise velocities observed. From a
physical point of view, the non-dimensional bubble rise velocity reduces for steeper chute slopes
due to increasing turbulence. It is therefore evident that slopes of the trend lines t in Fig. 10 in-
crease for steeper chutes. They are constant because the streamwise Froude number Fo�P ac-
counts for the effect of slope. The parameter Fo�P incorporates the gross flow features with a
reducing flow depth h(x) in the tailwater direction. Note that this analysis is a simple approach
for the bubble rise velocity in turbulent flow. Fig. 11 refers to the C = 0.1% air concentration,
from which a similar trend as in Fig. 10 may be noted. The slope of the trend line was also
t = 0.029 but they intersect the x-axis at F0 = 11.8; the bubble rise velocity is thus zero for a higher
streamwise Froude number.

The non-dimensional bubble rise velocity Ubu depends exclusively on the streamwise Froude
number Fo�P. Fig. 12 shows a summary plot of all dimensional bubble rise velocities ubu in
[m/s] according to Eq. (14) for all investigated chute slopes against the inflow Froude number
Fo for the range of ubuconsidered in this project. Typically, one has 0.02 m/s 6 ubu 6 0.12 m/s
in Fig. 12(a), and 0.0 6 ubu 6 0.08 m/s in Fig. 12(b). The bubble rise velocity in model chute flow
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using a Froude model is of the order ubu � 0.08 m/s for the investigated air concentrations,
therefore.
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6. Conclusions

This project presents systematic measurements of air concentration profiles in high-speed chute
flow along with information on the streamwise air concentration, flow velocity and bubble size for
a large number of data. A complete automation of both the measuring probe and the data anal-
ysis was necessary to cover a wide range of hydraulic parameters. To investigate the bubble rise
velocity in chute flows the development of air concentration was analysed to indirectly derive the
bubble rise velocity. It was concluded that the bubble rise velocity depends on the amount of local
air presence, e.g. 1% or 0.1% air concentration, respectively. It was found that the bubble rise
velocity depends on the streamwise Froude number. Air bubbles in high-speed flows typically rise
with a velocity of 8 cm/s. Eq. (17) allows to estimate the bubble rise velocity, whereas Eq. (9) gives
the bubble size distribution in the uniform flow region. This information may be useful to under-
stand the turbulence effect in high speed flows. Additional data need to be collected in the grad-
ually varied flow region, and in non-prismatic chute reaches with a complex air transport because
of the presence of shock waves and three-dimensional flow features.
7. Data CD

All data are available. They are structured on the Data CD into the four chute slopes So, the air
supply system (aerator or pre-aeration) and the inflow Froude number Fo. The Data CD is avail-
able on request at VAW. E-mail: info@vaw.baug.ethz.ch; URL: http://www.vaw.ethz.ch/.
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